blikk info infothek forum galerie sitemap

Exponential-, Logarithmus- und logistische Funktionen
Der radioaktive Zerfall I

anfang zurueck weiter ende nach oben
         
    Exponentielle Modelle
   

Bei realen Problemen finden annähernd exponentielle Prozesse immer nur in kurzen Zeitintervallen vor. Eine Ausnahme bildet der radioaktive Zerfall, bei dem pro Zeiteinheit immer derselbe Prozentsatz der noch vorhandenen Atome des radioaktiven Elements zerfällt.

Aber auch hier hat das Modell seine Grenzen: Wenn irgendwann das letzte Atom zerfallen ist, ist die Anzahl der verbleibenden Atome Null. Exponentialfunktionen, mit deren Hilfe exponentielle Prozesse mathematisch beschrieben werden, können niemals einen Funktionwert Null annehmen.

     

Die Radiocarbonmethode

 

Bei der Radiocarbonmethode wird mit aufwendigen Mitteln der Restgehalt eines bestimmten Kohlenstoffisotops bestimmt. Das sind die Grundlagen des Verfahrens:

In der Atmosphäre befindet sich ein geringer Teil des radioaktiven Kohlenstoffs 14C (lies: C-14), von dem jährlich gerade 0,0121% zerfallen.

Jeder lebende Organismus enthält, solange er lebt, ebenfalls diesen Anteil an 14C-Atomen. Nach dem Tod wird jedoch kein neues 14C aufgenommen, so dass sich der Anteil jährlich verringert.

Werden antike Holzstücke oder Knochen bei Ausgrabungen auf ihr Alter hin untersucht, so muss lediglich festgestellt werden, welcher Bruchteil des ursprünglich vorhandenen 14C-Anteils noch vorhanden ist.

 

 

 

 

 

 

 

 

 

 

1000 Jahre sind nicht viel ...

 
  • 14C ist eines der Isotope des Kohlenstoffs, es enthält neben 6 Protonen 8 Neutronen im Kern. Dagegen hat das am häufigsten vorkommende Kohlenstoffatom nur 6 Protonen und 6 Neutronen, ist also ein 12C.
  • Die jährliche Zerfallsrate beträgt 0,0121%, damit bleiben also nach einem Jahr noch 99,9879% der zu Jahresbeginn vorhandenen Atome übrig. Der Zerfallsfaktor, mit dem ich den Bestand zu Beginn des Jahres multipizieren muss, um den Bestand am Anfang des nächsten Jahres zu erhalten, ist also 0,999879.
  • Wenn man nicht mit konkreten Massen (zu klein) oder konkreten Atomzahlen (zu groß) arbeiten möchte, kann man den Anfangsbestand z.B. zum Todeszeitpunkt eines Menschen oder zum Fällzeitpunkt eines Baumes mit 100% annehmen.
  • Damit kann man den Bestand an 14C zu einem bestimmten Zeitpunkt mit Hilfe der folgenden Funktion bestimmen: f(t)=100%. 0,999789t berechnen. Beispielsweise beträgt der Prozentsatz des verbleibenen 14C nach tausend Jahren noch f(1000)=100%. 0,9997891000 = 88,6%.
  • Gern wird auch der Zeitraum angegben, indem die Hälfte des Bestandes zerfällt (Halbwertzeit). Um diese zu berechnen, kannst du solange die Zeit in der Funktionsvorschrift verändern, bis etwa 50% herauskommt. Weisst du schon, dass man Exponentialgleichungen durch Logarithmieren lösen kann, so kannst du ihn auch berechnen: t = log(0,5)/log(0,999879) = 5728 Jahre.
  • Die Zerfallsrate des 14C ist ebenso wie die Halbwertzeit umstritten, weil sich z.B. durch die oberirdischen Atombombenversuche in der 50er und 60er Jahren des 20. Jahrhunderts der 14C-Gehalt der Atmosphäre deutlich verändert hat. Altersbestimmungen mit dieser Methode sind daher immer mit einer Unsicherheit verbunden.
 
     
Ideen für mögliche, selbstorganisierte
Übungen:
 
  • Im Jahr 1992 wurde im Eis eines Gletschers der Ötztaler Alpen ein Jahrhundertfund gemacht. Touristen entdeckten die vollständig erhaltene Leiche eines Steinzeitmenschen, der – nach seinem Fundort benannt – durch die Presse den Spitznamen „Ötzi“ bekam.

    Heute kann man ihn konserviert im Südtiroler Archäologie-museum in Bozen anschauen. Recherchiere dazu und stelle dir geeignete Fragen.
  • Im November 1922 wurde das Grabmal des ägyptischen Königs Tutanchamun geöffnet. Man fand in dem vergoldeten Holzschrein, in dem sich sieben weitere Schreine befanden, die Mumie des Königs Tutanchamun, der in der Zeit von 1332 bis 1323 v.Ch. regierte.

    Wie viel Prozent des ursprünglichen 14C-Anteils enthielt die Mumie noch bei ihrer Entdeckung 1922?

  • Mit der Radiocarbonmethode kann das Alter von Materialien bis ca. 50.000 Jahren bestimmt werden. Wie viel Prozent des ursprünglich vorhandenen 14C wäre dann noch vorhanden?

 

 
  • Eine traurige Berühmtheit erlangte das Metall Polonium-210. Nachweislich wurde es 2006 dazu benutzt, den russischen Regimekritiker Alexander Litwinenko zu ermorden. Auch der Tod des Palästinenserführers Arafat wird mit ihm in Verbindung gebracht. Recherchiere zu den Eigenschaften einschließlich Zerfallsrate und Halbwertzeit von Polonium und stelle dir selbst geeignete Fragen.
     
     
     
     
     

 

nach oben