|
|
|
Ideen zur
Vorbereitung | |
|
|
|
|
Tipp:
Überblick über alle zum realen Problem aufbereiteten Seiten |
|
Die SchülerInnen wissen bereits, dass sie In der sitemap zu "Auftürmende Müllberge: Ersticken wir am oder im Müll? " einen Überblick finden (a) über alle aufbereiteten Hilfen zur mathematischen Modellierung und (b) zum Einsatz von neuen Werkzeugen.
Diese sitemap sollten Lehrpersonen bei ihrer Unterrichts-Vorbereitung aber auch einsehen. Denn so erkennen sie auch, worauf sie im Unterricht ggf. moderierend hinweisen können.
Die zur Arbeit notwendigen Informationen zum Sachverhalt (u.a. mit Fakten und Datensätzen) müssen sie sich selbstorganisiert beschaffen. |
|
|
|
Adressatengruppen,
die mit diesem realen Problem angesprochen werden |
|
Mit dem realen Problem "Auftürmende Müllberge ..." können sich Schülerinnen und Schüler der Klassen 9 bis 12 im Unterrichtsfach Mathematik auseinander setzen, die bereits im Modellieren geübt sind. Neben Mathematik können aber u.a. auch die Fächer Physik, Chemie, Politik, Religion und/oder Wirtschaftslehre angesprochen werden. Es wird aber in realistischer Weise angenommen, dass das Projekt von einer Kleingruppe im MatheUnterricht durchgeführt wird. |
|
|
|
Und was hat das alles mit Mathematik zu tun? |
|
Wird das Problem im Mathematikunterricht behandelt, so steht die mathematische Modellierung im Zentrum. Je nach gewähltem Teilproblem kann folgende Mathe vorkommen: Klasse 9 bis 12
Daten zu den Sachverhalten selbstorganisiert recherchieren sowie in Werte-Tabellen und Graphen darstellen;
Diagramme vergleichen und interpretieren; ggf. Verdopplungszeiten ablesen;
Die erstellten Graphen nutzen, um Extrapolationen oder Prognosen oder Trends zu formulieren. Dabei die Unsicherheit einer Prognose angeben.
Korrelationen erstellen und Indexzahlen ermitteln;
Funktionsbegriff,; "Geschwindigkeit" des Wachstums; Ableitungsfunktion; Exponentialfunktion;
Eine Aktion und/oder eine Befragung planen, gestalten und durchführen, die Befragung mit den Mitteln der beschreibenden Statistik auswerten und die Auswertung interpretieren;
Extrapolationen errechnen, Prognosen formulieren und interpretieren; Wachstumsfunktion;
systemdynamische Zusammenhänge modellieren, simulieren und interpretieren |
|
|
|
|
|
Ideen zur Durchführung der Modellierungsphase |
|
|
|
Ggf. arbeitsteilige Kleingruppenarbeit an unterschiedlichen Fragen zum Problem |
|
Die Jugendlichen können mit einer Mögliche Bild-Diskussionen
oder einem Bericht über"Die Müll-Folklore in Neapel"
in das Thema einsteigen.
Nach einer kurzen Diskussion etwa in der ganzen Klasse leiten die möglichen Fragen "Müll deponieren oder verbrennen? Welche Folgen? Nützt die Mülltrennung? Wohin mit dem Plastik? ... ?" die SchülerInnen dazu an, sich auf der Grundlage ihrer Interessen für die Arbeit an einem der folgenden Fragebereiche zu entscheiden:
Diese Entscheidung für einen Fragenbereich führt zu einer Klein-Gruppenbildung. Die Planung einer Aktion oder die Durchführung einer Befragung zur Müllvermeidung oder Mülltrennung sind weniger anspruchsvoll als die Analyse- und Konstruktionsanforderungen. Also sind weitere arbeitsteilige Kleingruppenbildungen in der Klasse möglich.
Anmerkung:
Die zuvor angegebenen Seiten können ausgedruckt werden, und wie Arbeitsblätter an die Kleingruppen verteilt werden. Erst dann, wenn die Jugendlichen im Internet recherchieren müssen oder sich mathematische Hilfen holen wollen oder auf dem Forum etwas austellen oder diskutieren wollen, brauchen sie den Computer. |
|
|
|
Beschreibung und Darstellung von allgemeinen und inhaltlichen Kompetenzen
Alle Kolleginnen und Kollegen die bei der Aufbereitung von Lösungsideen helfen wollen, sind herzlich dazu eingeladen.
Kontaktpartner siehe Information |
|
Kompetenzen, die Schülerinnen und Schüler im Unterricht erwerben können:
Werden die Analysen, Simulationen und Befragungen durchgeführt, so lässt sich an den schriftlichen Ergebnissen diagnostizieren, welche Kompetenzen in welchen Grad erworben wurden. |
|
|
|
Mathematik alsErkenntnismittel |
|
Bei der Beantwortung der Teilfragen dieses realen Problems ist die Mathematik ein Mittel zur vertieften Erkenntnis von Zusammenhängen und Entwicklungsverläufen. |
|
|
|
Die Rolle der
Mathe-LehererIn |
|
Während der Vorbereitung und auch in der Modellierungsphase übernimmt die Mathematiklehrerin und der Mathematiklehrer in der Regel die Rolle eines kompetenten Laien. |
|
|
|
Recherchen im Internet |
|
Recherchen im Internet sind bei diesem realen Problem notwendig. Es gibt aber kommentierte Links ins Internet.
Bei der Bearbeitung des realen Problems geht es vornehmlich um Mathematik und nicht um das medienpädagogische Ziel, im Internet recherchieren zu lernen. Dieses Ziel kann mit angesprochen werden, ist aber nicht zentral. |
|
|
|
Systematisierung |
|
Zum Zweiten bilden die Präsentationen den Einstieg in die (der Modellierungsphase folgende) Systematisierung der "erfundenen" oder genutzten Mathe.
In der Regel helfen die "mathematischen Hilfen" bei der Systematisierung.
Sie schließt sich immer an, wohingegen eine internationale Kommunikation eine weitere Möglichkeit im Herbst eines jeden Jahres bedeuten kann. |
|
|
|
Eine Internationale Kommunikation und Kooperation zum Thema ist eine weitere Möglichkeit |
|
Das reale Problem ist so aufbereitet, dass es umfassender durch Arbeitsteilung gelöst werden kann.
Die Lern- und Arbeitsumgebung stellt zu diesem Zweck auch ein Forum und eine Galerie zur Verfügung, die ebenfalls für kooperatives Arbeiten genutzt werden können.
Eine internationale Verständigung ist von der Sache her sinnvoll und nicht aufgesetzt. Siehe dazu die Hinweise für Schülerinnen und Schüler.
Für Lehrpersonen kann es hilfreich sein, diese bei der Vorbereitung des Unterrichts zur Kenntnis zu nehmen. Denn auch diese Texte können ausgedruckt und ggf. ausgehangen werden. |
|
|
|
|
|
Die Patinnen und Paten dieser Arbeitsumgebung bitten alle Kolleginnen und Kollegen um Ergänzungen oder Erprobungsberichte.
Für Rückmeldungen kann neben einer "Papierform" auch das offene Forum "Kooperation zwischen Lehrpersonen" oder das geschlossene Forum "Didaktische Fragen zum Mathe-Unterricht" dieser Arbeitsumgebung genutzt werden. |