blikk Didaktisch-methodische Überlegungen
forum galerie sitemap
punkt infothek
blikk matheueberall infothek

Ideen zur Vorbereitung, Strukturierung und Moderation des Unterrichts zur Sachsituation:
"Spiegelsymmetrieen überall, auch an eurem Körper"

an den anfang zurueck weiter ans ende eine ebene nach oben
 
 
 
 
eine ebene nach oben
 
Ideen zur Vorbereitung des Unterrichts
(u.a. um welche mathematischen Inhalte geht es?)
   
Die Sachsituation im Mathematikunterricht
siehe auch die Sachsituation:
Kreis-Symmetrieen ...
und Ornamente ...
  Diese Sachsituation kann - so wie sie aufbereitet wurde - im Mathematik-Unterricht der Klassen 3 bis 7 (natürlich mit unterschiedlichen Ausprägungen) bearbeitet werden. Sie steht inhaltlich in engem Zusammenhang mit gestalterischen Arbeiten im Schulgebäude oder auf dem Schulhof oder im Sach- und Kunstunterricht.
Immer ist es unvermeidbar, dass die Kinder Texte lesen müssen.
   
Mögliche mathematische Modellierungen
 

Bei gestalterischen Arbeiten im Schulgebäude oder auf dem Schulhof oder einfach weil es Spaß macht sind die folgenden mathematischen Modellierungen möglich:

Dabei sollten sich die Kinder einer Kleingruppe aber für die Arbeit in einem der drei Bereiche Natur, Kultur oder Technik entscheiden! Bei der Präsentation der Ergebnisse wird für alle dadurch ein Mehr erzeugt, dass die Berichte wahrscheinlich wieder umfassend über Natur, Kultur und Technik erfolgen.
Innermathematisches Argumentieren, Strukturieren und Präzisieren von Begriffen wird in der Phase des lokalen Ordnen angeleitet s.u.!

   
Mögliche mathematische Inhalte (Stoffe)
  Die möglichen mathematischen Inhalte, die während der Modellierung von den Kindern neu erfunden, genutzt oder wiederholt werden können, sind auf der Seite zuvor beschrieben.
 
MEHR DAZU: Vertiefende Informationen zur Mathematik
   
Mathematische Voraussetzungen
  Die Kinder sollten mit einem Lineal und einem Geodreieck umgehen können. Sie können es aber auch innerhalb dieser Sachsituation lernen.
   
Einbettung der mathematischen Modellierung in ein Projekt zur Gestaltung von Schulhaus, Klassenraum oder Schulhof oder ...
  Wird die mathematische Modellierung in irgendein Projekt mit dem Thema "Gestaltung ... " eingebunden (etwa im Kunstunterricht), so muss zusammen überlegt werden, zu welchem Zeitpunkt dies sinnvoll ist. Eine solche Einbettung erhöht die planerischen und pädagogischen Anforderungen an die durchführenden Lehrpersonen!
In jedem Fall ist auch das Fach Sprache/Deutsch durch die Verschriftlichung der mathematischen Modellierungs-Ergebnisse beteiligt.
   
 
eine ebene nach oben
 
Strukturierung eines Unterrichtsablaufs
im Mathe-Unterricht
   

Verweis auf idealtypische Unterrichts-Verläufe

 

 
   
  Die vorstehenden Beschreibungen erfolgen so, als ob das Medium zum ersten Mal im Unterricht genutzt würde. In der folgenden Beschreibung werden daher nur noch Besonderheiten beschrieben, die sich auf die spezielle Sachsituation beziehen.
   
Wahlmöglichkeiten
und
Entscheidungen
  Die Sachsituation wird in der Klasse an-diskutiert, insbesondere wird die Bedeutung der Spiegelsymmetrie des menschlichen Körpers diskutiert. Und dabei können auch die Bildbeschreibungen genutzt werden.
Mit der Seite Eine Welt voller Spiegel-Symmetrieen in Natur, Kultur und Technik wird die Arbeit in den Kleingruppen fortgesetzt. In dieser Phase sollten sich die Kinder die Bildgalerien zur Spiegelsymmetrie ansehen, insbesondere aber auf einer Exkursion selbst Fotografien von Spiegelsymmetrieen herstellen. Die Seite: Was ist das Besondere an Symmetrieen? Wie könnt ihr sie konstruieren? Haben Symmetrieen einen Zweck? führt die Kinder zu Wahlmöglichkeiten für die folgenden modellierenden Arbeiten. Dabei sollten sich die Kinder einer Kleingruppe aber für die Arbeit in einem der drei Bereiche Natur, Kultur oder Technik und für einen der drei Fragenbereiche entscheiden! Sie können nicht alles machen.
   
Mathematische Modellierung
und selbstverantwortetes und selbstorganisiertes Lernen
  Die mathematische "Modellierungsarbeit" in den Kleingruppen wird weitgehend selbstreguliert durchgeführt. Die Seite Übersicht über alle verfügbaren Hilfen bietet den Kindern einen Überblick über alle mathematischen Hilfen und den LehrerInnen eine Hilfe zur Moderation.
   
Produktorientierung -
Präsentation des Arbeitsergebnisses
  Alle Fotos und Ergebnisse werden präsentiert. Zusammen sollten sie ein Mehr für alle sein! Die Kinder könnten staunen, wie weit verbreitet sowohl in Natur, als auch in Kultur und Technik die Spiegelsymmetrie ist. Sie könnten berechtigt fragen, ob es überhaupt Nicht-Symmetrieen gibt. Unter "Anregungen zur Präsentation und Kommunikation" finden sie weitere Hilfen auch für eine interkulturelle Kommunikation.
   
Online-Kommunikation
  Falls die Lernarbeit innerhalb einer internationalen Projektzeit durchgeführt wird, können und sollten die Ergebnisse auch auf dem Forum "ausgestellt" werden. Dann wird, über die eigene Klasse hinausgehend, ein Erfahrungsaustausch, ein Staunen und eine interkulturelle Diskussion möglich.
   
Phase des lokalen Ordnens
mathematischer Inhalte
sowie
Übe- und Anwendungsphase
 

Die Lehrperson sollte im Zusammenhang mit dieser Sachsituation den Blick unbedingt darauf lenken:

  • dass die Achsensymmetrie in unserer Welt von großer Bedeutung ist (die Natur hat es so eingerichtet, die Menschen machen sie in der Technik nach, Menschen finden sie interkulturell als schön, in der Physik ist sie ein Findeprizip, ...) und
  • dass Achsensymmetrien mit Zirkel und Geodreieck konstruiert werden können, dazu aber einige Grundkonstruktionen gelernt werden müssen.

Eine lokale Vertiefungsmöglichkeit ist auch (hier vielleicht aber von untergeordneter Bedeutung):

  • dass Befragungsergebnisse in Form von Listen (Urlisten), Tabellen und Diagrammen darstellbar und auswertbar sind,
  • dass Befragungsergebnisse (Daten) aber immer interpretiert werden müssen und
  • dass u.a. das arithmetische Mittel nur ein möglicher Mittelwert ist und es viele weitaus wichtigere Größen gibt, um Gruppen miteinander zu vergleichen.
Messreihen und Fragebögen auswerten und deuten
   
 
eine ebene nach oben
 
Moderation im Unterricht -
Wo liegen ggf. die Klippen im Unterricht?
   
 
Allgemeingültige Hinweise zur Moderation
  In der Folge werden nur noch Besonderheiten beschrieben, die sich auf diese spezielle Sachsituation beziehen.
     
Pädagogische Beratung bei der Entscheidung und in der Modellierungphase
  Den Kindern fällt es schwer, eine Entscheidung zu treffen. Das ist eine entscheidende Klippe am Anfang. Eine weitere Klippe ist das Durchhalten der Entscheidung, also den Modellierungsprozess nicht abzubrechen.
     
Nutzung neuer Medien
  Es gibt dynamische Geometrie-Software. Wer sich traut, kann damit arbeiten. Im Rahmen dieser Lernumgebung gibt zur Zeit aber noch keine Hilfestellungen. Sie sind geplant. Sehen Sie sich hin und wieder die Seite "Aktuelles zur Lernumgebung" an.
an den seitenanfang